Please Try a Different Browser

You are using an outdated browser that is not compatible with our website content. For an optimal viewing experience, please upgrade to Microsoft Edge or view our site on a different browser.

If you choose to continue using this browser, content and functionality will be limited.


What Makes Cognitive Document Automation So Smart?

Welcome to part two of our six-part series that will take readers on a journey through the latest concepts in multichannel document capture and intelligent OCR, with an emphasis on how AI has transformed what’s possible in making your documents and data work for you – and not against you.

In part one, we took a look at how RPA marked a revolution in empowering businesses to solve problems associated with manual, data-centric tasks. But what about the documents? RPA is historically ineffective in automating document processing. 

Enter CDA. CDA does the “head work” of understanding what the document or email is about, what information it contains and what to do with it. RPA and CDA work in tandem to automate the data-centric tasks and document processing that are present in many business processes. CDA encompasses three process stages that streamline business operations: Acquire, Understand and Integrate. For part two of our series, we’ll take a closer look at these stages.


RPA+CDA systems can both capture documents (CDA), and access electronic data (RPA). For CDA, the documents could be in a variety of formats—email, fax, folder, PDF and Office files, website uploads, MFPs, scanners and, especially, mobile devices. 

Flexibility is key: your customers are unlikely to have the patience to adjust to different instructions, re-submit information or, worst of all, start over; therefore, your document submission process should be “smart” enough to allow them to switch back and forth between channels during the same process. 

Embedded document capture capabilities are also important for mobile apps and capture-enabled websites, and should enable real-time capture and data display and allow users to correct any errors in the data before submitting. 


The document has been acquired. What next? 
This is where CDA answers the following questions: 

  • What is this document or email about?
  • What information does it contain?
  • What should be done with the document and the information?
To make sense of the document and the information contained within, it must be cognitively transformed—that is, translated into structured, business-consumable content required by downstream processes and systems (such as BPM, CRM, ECM, ERP, etc.). 

Cognitive document automation uses a variety of artificial intelligence (AI) capabilities, such as natural language processing (NLP) and machine learning, to cluster, classify, separate, OCR, extract, and understand (human language) any type of document. Machine learning is a key component of CDA, easing the configuration and maintenance of CDA systems. Just provide a few samples of each document type, and CDA automatically knows how to classify and extract data from them―there’s no need to write rules or create rigid layout-based templates for each document type. If documents change over time, machine learning gracefully adjusts to those changes without human labor. Absent machine learning, traditional document capture systems become obsolete soon after day 1 of production operations, as documents inevitably change, requiring endless manual configuration effort to keep up.

CDA also employs natural language processing (NLP) to understand text-rich documents like contracts, correspondence, mortgage documents, and M&A documents―documents traditional capture systems couldn’t handle. Instead of employing people to perform low-value tasks like searching through paragraphs of text for key information across thousands of documents, NLP can be used to quickly and automatically extract key data such as contract dates, amounts, parties or addresses―anything of interest.

Simply put, CDA uses AI to automatically understand and learn documents, so people don’t have to. 

Typically, the steps required for CDA to understand a document are: 

  1. Machine learning
  2. Image perfection
  3. Classify documents
  4. Separate documents
  5. Extract information
  6. Evaluate results
  7. Manage exceptions


In the final step, once the information is “understood,” CDA integrates with downstream processes or systems of record through either pre-configured, system-specific connectors or API- or standards-based connectors. CDA can also leverage RPA robots to integrate with systems where these connectors are unavailable. In this case, RPA employs built-in integration capabilities that easily map data between source and destination systems, without the need for exposed APIs or web services and without writing integration code.

Beyond CDA and RPA

Though the benefits and ROI of RPA and CDA are substantial, organizations can unlock even greater levels of efficiency by laying the foundation for enterprise-wide Intelligent Automation―adopting RPA with integrated “smart" automation capabilities that include not only cognitive capture, but also process orchestration and analytics. Intelligent Automation combines AI technologies with RPA to manage the world’s most powerful "total" workforce comprising digital workers and human talent―helping your business work today like the workplace of tomorrow.

Ready to learn more? Get Your Intelligent Digital Workforce: How RPA and Cognitive Document Automation Deliver the Promise of Digital Business

Download Now